Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.533
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612493

RESUMO

Adrenergic pathways represent the main channel of communication between the nervous system and the immune system. During inflammation, blood monocytes migrate within tissue and differentiate into macrophages, which polarize to M1 or M2 macrophages with tissue-damaging or -reparative properties, respectively. This study investigates whether the ß-adrenergic receptor (ß-AR)-blocking drug propranolol modulates the monocyte-to-macrophage differentiation process and further influences macrophages in their polarization toward M1- and M2-like phenotypes. Six-day-human monocytes were cultured with M-CSF in the presence or absence of propranolol and then activated toward an M1 pro-inflammatory state or an M2 anti-inflammatory state. The chronic exposure of monocytes to propranolol during their differentiation into macrophages promoted the increase in the M1 marker CD16 and in the M2 markers CD206 and CD163 and peroxisome proliferator-activated receptor É£ expression. It also increased endocytosis and the release of IL-10, whereas it reduced physiological reactive oxygen species. Exposure to the pro-inflammatory conditions of propranolol-differentiated macrophages resulted in an anti-inflammatory promoting effect. At the molecular level, propranolol upregulated the expression of the oxidative stress regulators NRF2, heme oxygenase-1 and NQO1. By contributing to regulating macrophage activities, propranolol may represent a novel anti-inflammatory and immunomodulating compound with relevant therapeutic potential in several inflammatory diseases.


Assuntos
Monócitos , Propranolol , Humanos , Propranolol/farmacologia , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2 , Macrófagos , Anti-Inflamatórios/farmacologia
2.
Bone Res ; 12(1): 18, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514644

RESUMO

The autonomic nervous system plays a crucial role in regulating bone metabolism, with sympathetic activation stimulating bone resorption and inhibiting bone formation. We found that fractures lead to increased sympathetic tone, enhanced osteoclast resorption, decreased osteoblast formation, and thus hastened systemic bone loss in ovariectomized (OVX) mice. However, the combined administration of parathyroid hormone (PTH) and the ß-receptor blocker propranolol dramatically promoted systemic bone formation and osteoporotic fracture healing in OVX mice. The effect of this treatment is superior to that of treatment with PTH or propranolol alone. In vitro, the sympathetic neurotransmitter norepinephrine (NE) suppressed PTH-induced osteoblast differentiation and mineralization, which was rescued by propranolol. Moreover, NE decreased the PTH-induced expression of Runx2 but enhanced the expression of Rankl and the effect of PTH-stimulated osteoblasts on osteoclastic differentiation, whereas these effects were reversed by propranolol. Furthermore, PTH increased the expression of the circadian clock gene Bmal1, which was inhibited by NE-ßAR signaling. Bmal1 knockdown blocked the rescue effect of propranolol on the NE-induced decrease in PTH-stimulated osteoblast differentiation. Taken together, these results suggest that propranolol enhances the anabolic effect of PTH in preventing systemic bone loss following osteoporotic fracture by blocking the negative effects of sympathetic signaling on PTH anabolism.


Assuntos
Anabolizantes , Reabsorção Óssea , Fraturas por Osteoporose , Camundongos , Animais , Hormônio Paratireóideo/farmacologia , Anabolizantes/farmacologia , Fraturas por Osteoporose/tratamento farmacológico , Propranolol/farmacologia , Fatores de Transcrição ARNTL , Reabsorção Óssea/tratamento farmacológico , Antagonistas Adrenérgicos beta/farmacologia
3.
Toxicol Appl Pharmacol ; 484: 116881, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437958

RESUMO

Pain has a negative impact on public health, reducing quality of life. Unfortunately, current treatments are not fully effective and have adverse effects. Therefore, there is a need to develop new analgesic compounds. Due to promising results regarding the antinociceptive effect of N-(3-(phenylselanyl)prop-2-in-1-yl)benzamide (SePB), this study aimed to evaluate the participation of the dopaminergic and noradrenergic systems in this effect in mice, as well as its toxicity. To this, the antagonists sulpiride (D2/D3 receptor antagonist, 5 mg/kg), SCH-23390 (D1 receptor antagonist, 0.05 mg/kg), prazosin (α1 adrenergic receptor antagonist, 0.15 mg/kg), yohimbine (α2-adrenergic receptors, 0.15 mg/kg) and propranolol (non-selective ß-adrenergic antagonist, 10 mg/kg) were administered intraperitoneally to mice 15 min before SePB (10 mg/kg, intragastrically), except for propranolol (20 min). After 26 min of SePB administration, the open field test was performed for 4 min to assess locomotor activity, followed by the tail immersion test to measure the nociceptive response. For the toxicity test, animals received a high dose of 300 mg/kg of SePB. SePB showed an increase in the latency for nociceptive response in the tail immersion test, and this effect was prevented by SCH-23390, yohimbine and propranolol, indicating the involvement of D1, α2 and ß-adrenergic receptors in the antinociceptive mechanism of the SePB effect. No changes were observed in the open field test, and the toxicity assessment suggested that SePB has low potential to induce toxicity. These findings contribute to understanding SePB's mechanism of action, with a focus on the development of new alternatives for pain treatment.


Assuntos
Propranolol , Qualidade de Vida , Camundongos , Animais , Propranolol/farmacologia , Propranolol/uso terapêutico , Analgésicos/toxicidade , Dor/tratamento farmacológico , Norepinefrina , Ioimbina/toxicidade , Ioimbina/uso terapêutico , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Dopamina , Sulpirida , Receptores Adrenérgicos alfa 2
4.
Cells ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334645

RESUMO

We previously published that in patients with infantile hemangioma (IH) at the onset (T0) colony forming unit-fibroblasts (CFU-Fs) are present in in vitro cultures from PB. Herein, we characterize these CFU-Fs and investigate their potential role in IH pathogenesis, before and after propranolol therapy. The CFU-F phenotype (by flow cytometry), their differentiation capacity and ability to support angiogenesis (by in vitro cultures) and their gene expression (by RT-PCR) were evaluated. We found that CFU-Fs are actual circulating MSCs (cMSCs). In patients at T0, cMSCs had reduced adipogenic potential, supported the formation of tube-like structures in vitro and showed either inflammatory (IL1ß and ESM1) or angiogenic (F3) gene expression higher than that of cMSCs from CTRLs. In patients receiving one-year propranolol therapy, the cMSC differentiation in adipocytes improved, while their support in in vitro tube-like formation was lost; no difference was found between patient and CTRL cMSC gene expressions. In conclusion, in patients with IH at T0 the cMSC reduced adipogenic potential, their support in angiogenic activity and the inflammatory/angiogenic gene expression may fuel the tumor growth. One-year propranolol therapy modifies this picture, suggesting cMSCs as one of the drug targets.


Assuntos
Hemangioma , Células-Tronco Mesenquimais , Humanos , Propranolol/farmacologia , Propranolol/uso terapêutico , Propranolol/metabolismo , Transcriptoma , Células-Tronco Mesenquimais/metabolismo , Adipogenia/genética , Hemangioma/genética , Hemangioma/tratamento farmacológico , Hemangioma/metabolismo
5.
J Physiol ; 602(4): 619-632, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38329227

RESUMO

Sympathetic transduction is the study of how impulses of sympathetic nerve activity (SNA) affect end-organ function. Recently, the transduction of resting bursts of muscle SNA (MSNA) has been investigated and shown to have a role in the maintenance of blood pressure through changes in vascular tone in humans. In the present study, we investigate whether directly recorded resting cardiac SNA (CSNA) regulates heart rate (HR), coronary blood flow (CoBF), coronary vascular conductance (CVC), cardiac output (CO) and mean arterial pressure. Instrumentation was undertaken to record CSNA and relevant vascular variables in conscious sheep. Recordings were performed at baseline, as well as after the infusion of a ß-adrenoceptor blocker (propranolol) to determine the role of ß-adrenergic signalling in sympathetic transduction in the heart. The results show that after every burst of CSNA, there was a significant effect of time on HR (n = 10, ∆: +2.1 ± 1.4 beats min-1 , P = 0.002) and CO (n = 8, ∆: +100 ± 150 mL min-1 , P = 0.002) was elevated, followed by an increase in CoBF (n = 9, ∆: +0.76 mL min-1 , P = 0.001) and CVC (n = 8, ∆: +0.0038 mL min-1  mmHg-1 , P = 0.0028). The changes in HR were graded depending on the size and pattern of CSNA bursts. The HR response was significantly attenuated after the infusion of propranolol. Our study is the first to explore resting sympathetic transduction in the heart, suggesting that CSNA can dynamically change HR mediated by an action on ß-adrenoceptors. KEY POINTS: Sympathetic transduction is the study of how impulses of sympathetic nerve activity (SNA) affect end-organ function. Previous studies have examined sympathetic transduction primarily in the skeletal muscle and shown that bursts of muscle SNA alter blood flow to skeletal muscle and mean arterial pressure, although this has not been examined in the heart. We investigated sympathetic transduction in the heart and show that, in the conscious condition, the size of bursts of SNA to the heart can result in incremental increases in heart rate and coronary blood flow mediated by ß-adrenoceptors. The pattern of bursts of SNA to the heart also resulted in incremental increases in heart rate mediated by ß-adrenoceptors. This is the first study to explore the transduction of bursts of SNA to the heart.


Assuntos
Coração , Propranolol , Humanos , Ovinos , Animais , Propranolol/farmacologia , Coração/inervação , Pressão Arterial , Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Sistema Nervoso Simpático/fisiologia , Receptores Adrenérgicos
6.
J Cancer Res Clin Oncol ; 150(2): 59, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294713

RESUMO

PURPOSE: This study will focus on 4T1 cells, a murine mammary adenocarcinoma cell line, as the primary research subject. We aim to investigate the inhibitory effects and mechanisms of propranolol on epithelial-mesenchymal transition (EMT) in breast cancer cells, aiming to elucidate this phenomenon at the miRNA level. METHODS: In this study, the EMT inhibitory effect of propranolol was observed through in vitro and animal experiments. For the screening of potential target miRNAs and downstream target genes, second-generation sequencing (SGS) and bioinformatics analysis were conducted. Following the screening process, the identified target miRNAs and their respective target genes were confirmed using various experimental methods. To confirm the target miRNAs and target genes, Western Blot (WB), reverse transcription polymerase chain reaction (RT-PCR), and immunofluorescence experiments were performed. RESULTS: In this study, we found that propranolol significantly reduced lung metastasis in 4T1 murine breast cancer cells (p < 0.05). In vitro and in vivo experiments demonstrated that propranolol inhibited the epithelial-mesenchymal transition (EMT) as evidenced by Western Blot analysis (p < 0.05). Through next-generation sequencing (SGS), subsequent bioinformatics analysis, and PCR validation, we identified a marked downregulation of miR-499-5p (p < 0.05), suggesting its potential involvement in mediating the suppressive effects of propranolol on EMT. Overexpression of miR-499-5p promoted EMT, migration, and invasion of 4T1 cells, and these effects were not reversed or attenuated by propranolol (Validated via Western Blot, wound healing assay, transwell migration, and invasion assays, p < 0.05). Sox6 was identified as a functional target of miR-499-5p, with its downregulation correlating with the observed EMT changes (p < 0.05). Silencing Sox6 or overexpressing miR-499-5p inhibited Sox6 expression, further promoting the processes of EMT, invasion, and migration in 4T1 cells. Notably, these effects were not alleviated by propranolol (validated via Western Blot, wound healing assay, transwell migration, and invasion assays, p < 0.05). The direct interaction between miR-499-5p and Sox6 mRNA was confirmed by dual-luciferase reporter gene assay. CONCLUSION: These results suggest that propranolol may have potential as a therapeutic agent for breast cancer treatment by targeting EMT and its regulatory mechanisms.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , MicroRNAs , Propranolol , Animais , Camundongos , Western Blotting , Linhagem Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , MicroRNAs/genética , Propranolol/farmacologia , Fatores de Transcrição SOXD , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética
7.
J Cardiovasc Pharmacol ; 83(3): 243-250, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181215

RESUMO

ABSTRACT: Amphetamine derivatives are used worldwide legally or illegally and intoxications may be accompanied by cardiac arrhythmias. Here, we tested contractile effects of cumulative applied (±)-amphetamine, pseudoephedrine, nor-pseudoephedrine (cathine), and cathinone in electrically stimulated (1 Hz) human right atrial preparations (HAP) and mouse left atrial preparations and in spontaneously beating mouse right atrial preparations. In mouse atrial preparations, amphetamine increased force of contraction and beating rate in a concentration- and time-dependent manner, starting at 1 µM in left atrial preparations to 157.1% ± 3.0% and right atrial preparations to 146.6% ± 9.8% at 10 µM, respectively [mean ± standard error of the mean (SEM); n = 5; P < 0.05]. Pseudoephedrine, cathine, or cathinone alone were ineffective in mouse atrial preparations but after pre-incubation with the phosphodiesterase IV inhibitor rolipram (0.1 µM), a positive inotropic effect was noted (mean ± SEM: pseudoephedrine: 112.3% ± 9.8%; cathine: 109.0% ± 4.3%; cathinone: 138.3% ± 21.2%). The effects of all drugs were greatly attenuated by 10 µM cocaine or 10 µM propranolol treatments. However, In HAP, not only amphetamine (to a mean ± SEM of 208% ± 32%) but also pseudoephedrine (to a mean ± SEM of 287% ± 60%), cathine (to a mean ± SEM of 234% ± 52%), and cathinone (to a mean ± SEM of 217% ± 65%) increased force of contraction without the need of phosphodiesterase inhibition. The contractile effects in HAP were attenuated by 10 µM cocaine and antagonized by 10 µM propranolol. We conclude that amphetamine, pseudoephedrine, cathine, and cathinone act probably via release of noradrenaline from cardiac stores as indirect sympathomimetic agents in mouse and more pronounced in human atrial preparations.


Assuntos
Alcaloides , Anfetamina , Cocaína , Fenilpropanolamina , Humanos , Anfetamina/farmacologia , Pseudoefedrina/farmacologia , Propranolol/farmacologia , Contração Miocárdica
8.
Artigo em Inglês | MEDLINE | ID: mdl-38189055

RESUMO

Background: Essential tremor, the world's most prevalent movement disorder, lacks a clear understanding of its pathophysiology. Propranolol, a non-specific beta-blocker capable of crossing the blood-brain barrier, is a primary choice for essential tremor treatment. While its tremor-reducing effects are generally attributed to peripheral actions, various uses hint at central adrenergic effects. Nevertheless, propranolol's precise impact on the central nervous system in essential tremor subjects remains unexplored. Methods: In this study, we employed transcranial magnetic stimulation to assess the influence of propranolol on the excitability of the primary motor cortex (M1) in patients with essential tremor, compared to an age- and sex-matched control group. Cortical excitability parameters were measured following placebo and propranolol administration, encompassing resting and active motor thresholds, motor evoked potential characteristics, cortical silent period, and the input/output curve. Results: Distinct effects were observed across the two cortical hemispheres. Essential tremor patients displayed inhibition of the left M1 cortex and heightened excitability in the right M1 cortex four hours after propranolol administration, but not following placebo. Conclusions: These findings suggest potential differential noradrenergic excitatory and inhibitory modulation. However, comprehensive understanding necessitates further investigations, including left-handed participants and more diverse essential tremor subpopulations. This study underscores the need for continued exploration to unravel propranolol's complex effects on motor cortex excitability in essential tremor.


Assuntos
Tremor Essencial , Córtex Motor , Humanos , Propranolol/farmacologia , Propranolol/uso terapêutico , Tremor Essencial/tratamento farmacológico , Movimento , Tremor
9.
Plant Commun ; 5(1): 100679, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37653727

RESUMO

Plant diseases cause enormous economic losses in agriculture and threaten global food security, and application of agrochemicals is an important method of crop disease control. Exploration of disease-resistance mechanisms and synthesis of highly bioactive agrochemicals are thus important research objectives. Here, we show that propranolol, a phosphatidate phosphatase (Pah) inhibitor, effectively suppresses fungal growth, sporulation, sexual reproduction, and infection of diverse plants. The MoPah1 enzyme activity of the rice blast fungus Magnaporthe oryzae is inhibited by propranolol. Alterations in lipid metabolism are associated with inhibited hyphal growth and appressorium formation caused by propranolol in M. oryzae. Propranolol inhibits a broad spectrum of 12 plant pathogens, effectively inhibiting infection of barley, wheat, maize, tomato, and pear. To improve antifungal capacity, we synthesized a series of propranolol derivatives, one of which shows a 16-fold increase in antifungal ability and binds directly to MoPah1. Propranolol and its derivatives can also reduce the severity of rice blast and Fusarium head blight of wheat in the field. Taken together, our results demonstrate that propranolol suppresses fungal development and infection through mechanisms involved in lipid metabolism. Propranolol and its derivatives may therefore be promising candidates for fungicide development.


Assuntos
Fungicidas Industriais , Magnaporthe , Oryza , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Oryza/microbiologia , Fosfatidato Fosfatase/metabolismo , Fosfatidato Fosfatase/farmacologia , Propranolol/farmacologia , Propranolol/metabolismo , Magnaporthe/metabolismo , Triticum
10.
J Cell Mol Med ; 28(2): e18047, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37970991

RESUMO

Proranolol has long been recommended to prevent variceal bleeding in patients with cirrhosis. However, the mechanisms of propranolol in liver fibrosis have not yet been thoroughly elucidated. Autophagic cell death (ACD) of activated hepatic stellate cells (HSCs) is important in the alleviation of liver fibrosis. Our study aims to assess the mechanisms of propranolol regulating HSC ACD and liver fibrosis. ACD of HSCs was investigated using lentivirus transfection. The molecular mechanism was determined using a PCR profiler array. The role of autophagy-related protein 9b (ATG9b) in HSC ACD was detected using co-immunoprecipitation and co-localization of immunofluorescence. Changes in the signalling pathway were detected by the Phospho Explorer antibody microarray. Propranolol induces ACD and apoptosis in HSCs. ATG9b upregulation was detected in propranolol-treated HSCs. ATG9b upregulation promoted ACD of HSCs and alleviated liver fibrosis in vivo. ATG9b enhanced the P62 recruitment to ATG5-ATG12-LC3 compartments and increased the co-localization of P62 with ubiquitinated proteins. The PI3K/AKT/mTOR pathway is responsible for ATG9b-induced ACD in activated HSCs, whereas the p38/JNK pathway is involved in apoptosis. This study provides evidence for ATG9b as a new target gene and propranolol as an agent to alleviate liver fibrosis by regulating ACD of activated HSCs.


Assuntos
Morte Celular Autofágica , Varizes Esofágicas e Gástricas , Humanos , Células Estreladas do Fígado/metabolismo , Propranolol/farmacologia , Propranolol/metabolismo , Regulação para Cima , Fosfatidilinositol 3-Quinases/metabolismo , Varizes Esofágicas e Gástricas/metabolismo , Varizes Esofágicas e Gástricas/patologia , Hemorragia Gastrointestinal/metabolismo , Hemorragia Gastrointestinal/patologia , Cirrose Hepática/metabolismo , Fígado/metabolismo , Autofagia
11.
J Headache Pain ; 24(1): 165, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062355

RESUMO

BACKGROUND: Migraine is a disabling neurological disorder, characterized by recurrent headaches. During migraine attacks, individuals often experience sensory symptoms such as cutaneous allodynia which indicates the presence of central sensitization. This sensitization is prevented by oral administration of propranolol, a common first-line medication for migraine prophylaxis, that also normalized the activation of the locus coeruleus (LC), considered as the main origin of descending noradrenergic pain controls. We hypothesized that the basal modulation of trigeminal sensory processing by the locus coeruleus is shifted towards more facilitation in migraineurs and that prophylactic action of propranolol may be attributed to a direct action in LC through beta-adrenergic receptors. METHODS: We used simultaneous in vivo extracellular recordings from the trigeminocervical complex (TCC) and LC of male Sprague-Dawley rats to characterize the relationship between these two areas following repeated meningeal inflammatory soup infusions. Von Frey Hairs and air-puff were used to test periorbital mechanical allodynia. RNAscope and patch-clamp recordings allowed us to examine the action mechanism of propranolol. RESULTS: We found a strong synchronization between TCC and LC spontaneous activities, with a precession of the LC, suggesting the LC drives TCC excitability. Following repeated dural-evoked trigeminal activations, we observed a disruption in coupling of activity within LC and TCC. This suggested an involvement of the two regions' interactions in the development of sensitization. Furthermore, we showed the co-expression of alpha-2A and beta-2 adrenergic receptors within LC neurons. Finally propranolol microinjections into the LC prevented trigeminal sensitization by desynchronizing and decreasing LC neuronal activity. CONCLUSIONS: Altogether these results suggest that trigemino-coerulean coupling plays a pivotal role in migraine progression, and that propranolol's prophylactic effects involve, to some extent, the modulation of LC activity through beta-2 adrenergic receptors. This insight reveals new mechanistic aspects of LC control over sensory processing.


Assuntos
Transtornos de Enxaqueca , Propranolol , Ratos , Animais , Masculino , Propranolol/farmacologia , Propranolol/uso terapêutico , Ratos Sprague-Dawley , Locus Cerúleo , Receptores Adrenérgicos beta 2/uso terapêutico , Transtornos de Enxaqueca/prevenção & controle , Transtornos de Enxaqueca/tratamento farmacológico , Hiperalgesia/tratamento farmacológico
12.
Sci Rep ; 13(1): 21944, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081864

RESUMO

Activated brown fat (aBAT) is known to affect the evaluation of 18F-FDG PET scans, especially in young patients. The aim of this study was to determine factors influencing the occurrence of aBAT, and to investigate the effectiveness of the two preventive measures, warming and beta-blocker (propranolol) administration. Five-hundred-twenty-eight 18F-FDG-PET scans of 241 EuroNet-PHL-C2 trial patients from 41 nuclear medicine departments in Germany and Czech Republic were screened for aBAT. The occurrence of aBAT was analyzed with patient characteristics (age, sex, body mass index, predisposition to aBAT), weather data at the day of 18F-FDG PET scanning as well as the preventive measures taken. Potentially important factors from univariate analyses were included into a logistic regression model. Warming as a preventive measure was used in 243 18F-FDG-PET scans, propranolol was administered in 36, warming and propranolol were combined in 84, and no preventive measures were taken in 165 scans. Whereas age, sex and body mass index had no clear impact, there was an individual predisposition to aBAT. Logistic regression model revealed that the frequency of aBAT mainly depends on the outside temperature (p = 0.005) and can be effectively reduced by warming (p = 0.004), the administration of unselective beta-blocker or the combination of both. Warming is a simple, cheap and non-invasive method to reduce the frequency of aBAT. However, the effect of warming decreases with increasing outside temperatures. Administration of propranolol seems to be equally effective and provides advantages whenever the positive effect of warming is compromised. The combination of both preventive measures could have an additive effect.


Assuntos
Fluordesoxiglucose F18 , Linfoma , Humanos , Tecido Adiposo Marrom/diagnóstico por imagem , Antagonistas Adrenérgicos beta/farmacologia , Fluordesoxiglucose F18/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Propranolol/farmacologia , Compostos Radiofarmacêuticos/farmacologia
13.
Biochem Pharmacol ; 218: 115922, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37956892

RESUMO

Infantile hemangioma (IH) is the most common benign tumor in children. Propranolol is the first-line treatment for IH, but the underlying mechanism of propranolol treatment in IH is not completely understood. Integrated transcriptional and metabolic analyses were performed to investigate the metabolic changes in hemangioma-derived endothelial cells (HemECs) after propranolol treatment. The findings were then further validated through independent cell experiments using a Seahorse XFp analyzer, Western blotting, immunohistochemistry and mitochondrial functional assays. Thirty-four differentially expressed metabolites, including the glycolysis metabolites glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-bisphosphate, were identified by targeted metabolomics. A KEGG pathway enrichment analysis showed that the disturbances in these metabolites were highly related to glucose metabolism-related pathways, including the pentose phosphate pathway, the Warburg effect, glycolysis and the citric acid cycle. Transcriptional analysis revealed that metabolism-related pathways, including glycine, serine and threonine metabolism, tyrosine metabolism, and glutathione metabolism, were highly enriched. Moreover, integration of the metabolomic and transcriptomic data revealed that glucose metabolism-related pathways, particularly glycolysis, were altered after propranolol treatment. Cell experiments demonstrated that HemECs exhibited higher levels of glycolysis than human umbilical vein ECs (HUVECs) and that propranolol suppressed glycolysis in HemECs. In conclusion, propranolol inhibited glucose metabolism in HemECs by suppressing glucose metabolic pathways, particularly glycolysis.


Assuntos
Células Endoteliais , Hemangioma , Criança , Humanos , Células Endoteliais/metabolismo , Propranolol/farmacologia , Propranolol/metabolismo , Transdução de Sinais , Proliferação de Células , Hemangioma/tratamento farmacológico , Hemangioma/metabolismo , Hemangioma/patologia , Glucose/metabolismo , Fosfatos/farmacologia
14.
Stem Cell Res Ther ; 14(1): 266, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37740238

RESUMO

BACKGROUND: Polymorphic ventricular tachycardia (PMVT) is a rare genetic disease associated with structurally normal hearts which in 8% of cases can lead to sudden cardiac death, typically exercise-induced. We previously showed a link between the RyR2-H29D mutation and a clinical phenotype of short-coupled PMVT at rest using patient-specific hiPSC-derived cardiomyocytes (hiPSC-CMs). In the present study, we evaluated the effects of clinical and experimental anti-arrhythmic drugs on the intracellular Ca2+ handling, contractile and molecular properties in PMVT hiPSC-CMs in order to model a personalized medicine approach in vitro. METHODS: Previously, a blood sample from a patient carrying the RyR2-H29D mutation was collected and reprogrammed into several clones of RyR2-H29D hiPSCs, and in addition we generated an isogenic control by reverting the RyR2-H29D mutation using CRIPSR/Cas9 technology. Here, we tested 4 drugs with anti-arrhythmic properties: propranolol, verapamil, flecainide, and the Rycal S107. We performed fluorescence confocal microscopy, video-image-based analyses and biochemical analyses to investigate the impact of these drugs on the functional and molecular features of the PMVT RyR2-H29D hiPSC-CMs. RESULTS: The voltage-dependent Ca2+ channel inhibitor verapamil did not prevent the aberrant release of sarcoplasmic reticulum (SR) Ca2+ in the RyR2-H29D hiPSC-CMs, whereas it was prevented by S107, flecainide or propranolol. Cardiac tissue comprised of RyR2-H29D hiPSC-CMs exhibited aberrant contractile properties that were largely prevented by S107, flecainide and propranolol. These 3 drugs also recovered synchronous contraction in RyR2-H29D cardiac tissue, while verapamil did not. At the biochemical level, S107 was the only drug able to restore calstabin2 binding to RyR2 as observed in the isogenic control. CONCLUSIONS: By testing 4 drugs on patient-specific PMVT hiPSC-CMs, we concluded that S107 and flecainide are the most potent molecules in terms of preventing the abnormal SR Ca2+ release and contractile properties in RyR2-H29D hiPSC-CMs, whereas the effect of propranolol is partial, and verapamil appears ineffective. In contrast with the 3 other drugs, S107 was able to prevent a major post-translational modification of RyR2-H29D mutant channels, the loss of calstabin2 binding to RyR2. Using patient-specific hiPSC and CRISPR/Cas9 technologies, we showed that S107 is the most efficient in vitro candidate for treating the short-coupled PMVT at rest.


Assuntos
Cálcio , Taquicardia Ventricular , Humanos , Miócitos Cardíacos , Flecainida/farmacologia , Propranolol/farmacologia , Propranolol/uso terapêutico , Antiarrítmicos , Medicina de Precisão , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/genética , Verapamil/farmacologia , Verapamil/uso terapêutico
15.
Addict Biol ; 28(9): e13316, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37644893

RESUMO

Anxiety is a critical component of the development and maintenance of drug addiction; however, anti-anxiety medications such as benzodiazepines and beta-blockers (ß-adrenergic receptor antagonists) are not used for the treatment of substance use disorder, except for the management of acute withdrawal syndrome. Preclinical studies have shown that beta-blockers may reduce stress-induced relapse; however, the effect of beta blockers on the escalation and maintenance of drug intake has not been tested. To address this issue, we chronically administered the ß-adrenergic receptor antagonist propranolol during the escalation or maintenance of cocaine intake in a model of extended access (6 h) to cocaine self-administration (0.5 mg/kg). The behavioural specificity of propranolol was tested using a non-drug reward (saccharin). Daily administration of propranolol (15 mg/kg) prevented the development of escalation of cocaine self-administration and partially reversed self-administration after the establishment of escalation of intake. Moreover, propranolol dose-dependently decreased the motivation for cocaine tested under a progressive ratio schedule of reinforcement during the development of escalation and after maintenance. Finally, propranolol administration had no effect on the escalation and maintenance of saccharin self-administration. These results demonstrate that chronic treatment with propranolol provides therapeutic efficacy in reducing cocaine self-administration during the development and after the establishment of escalation of cocaine self-administration in an animal model relevant to cocaine use disorder. These results suggest that beta blockers should be further investigated as a target for medication development for the treatment of cocaine use disorder.


Assuntos
Cocaína , Propranolol , Animais , Propranolol/farmacologia , Norepinefrina , Sacarina , Autoadministração
16.
Elife ; 122023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606362

RESUMO

Rodent premotor cortex (M2) integrates information from sensory and cognitive networks for action planning during goal-directed decision-making. M2 function is regulated by cortical inputs and ascending neuromodulators, including norepinephrine (NE) released from the locus coeruleus (LC). LC-NE has been shown to modulate the signal-to-noise ratio of neural representations in target cortical regions, increasing the salience of relevant stimuli. Using rats performing a two-alternative forced choice task after administration of a ß-noradrenergic antagonist (propranolol), we show that ß-noradrenergic signaling is necessary for effective action plan signals in anterior M2. Loss of ß-noradrenergic signaling results in failure to suppress irrelevant action plans in anterior M2 disrupting decoding of cue-related information, delaying decision times, and increasing trial omissions, particularly in females. Furthermore, we identify a potential mechanism for the sex bias in behavioral and neural changes after propranolol administration via differential expression of ß2 noradrenergic receptor RNA across sexes in anterior M2, particularly on local inhibitory neurons. Overall, we show a critical role for ß-noradrenergic signaling in anterior M2 during decision-making by suppressing irrelevant information to enable efficient action planning and decision-making.


Assuntos
Córtex Motor , Feminino , Animais , Ratos , Propranolol/farmacologia , Locus Cerúleo , Neurônios , Norepinefrina
17.
Stress ; 26(1): 2239366, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37529896

RESUMO

Early-life attachment disruption appears to sensitize neuroinflammatory signaling to increase later vulnerability for stress-related mental disorders, including depression. How stress initiates this process is unknown, but studies with adult rats and mice suggest sympathetic nervous system activation and/or cortisol elevations during the early stress are key. Guinea pig pups isolated from their mothers exhibit an initial active behavioral phase characterized by anxiety-like vocalizing. This is followed by inflammatory-dependent depressive-like behavior and fever that sensitize on repeated isolation. Using strategies that have been successful in adult studies, we assessed whether sympathetic nervous system activity and cortisol contributed to the sensitization process in guinea pig pups. In Experiment 1, the adrenergic agonist ephedrine (3 or 10 mg/kg), either alone or with cortisol (2.5 mg/kg), did not increase depressive-like behavior or fever during initial isolation the following day as might have been expected to if this stimulation was sufficient to account for the sensitization process. In Experiment 2, both depressive-like behavior and fever sensitized with repeated isolation, but beta-adrenergic receptor blockade with propranolol (10 or 20 mg/kg) did not affect either of these responses or their sensitization. The high dose of propranolol did, however, reduce vocalizing. These results suggest sympathetic nervous system activation is neither necessary nor sufficient to induce the presumptive neuroinflammatory signaling underlying sensitization of depressive-like behavioral or febrile responses in developing guinea pigs. Thus, processes mediating sensitization of neuroinflammatory-based depressive-like behavior following early-life attachment disruption in this model appear to differ from those previously found to underlie neuroinflammatory priming in adults.


Assuntos
Hidrocortisona , Propranolol , Animais , Cobaias , Camundongos , Ratos , Propranolol/farmacologia , Estresse Psicológico , Comportamento Animal/fisiologia , Febre , Receptores Adrenérgicos
18.
Medicine (Baltimore) ; 102(32): e34672, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565874

RESUMO

BACKGROUND: Propranolol is the first choice for treating infantile hemangioma (IH). How propranolol works in IH remains unclear. Infantile hemangioma endothelial cells (HemECs) express Notch1, Jagged, Hey1, and other molecules in the Notch pathway, suggesting that Notch pathway-related molecules play an important role in affecting vascular endothelial cell proliferation. Whether propranolol can affect the Notch signaling pathway in IH treatment is unclear. METHODS: We performed this study to observe the effect of propranolol on the expression of Notch signaling pathway molecules in human umbilical vein endothelial cells (HUVECs) and to explore the therapeutic mechanism of propranolol on IH. HUVECs cultured in vitro were exposed to 60, 120, 240, 360, or 480 µM propranolol. The morphological changes of the HUVECs were observed under an inverted microscope. HUVECs proliferation was detected with Cell Counting Kit-8 (CCK-8). The effects of propranolol on HUVECs apoptosis were detected by flow cytometry. The role of Notch in propranolol inhibition of HUVEC proliferation was analyzed with real-time polymerase chain reaction (PCR) and western blotting. RESULTS: Propranolol reduced HUVECs numbers and altered their morphology. The inhibitory effect of propranolol on cell proliferation was dependent on the reaction time and drug concentration. Propranolol upregulated Jagged1, Notch1, and Hey1 expression and downregulated delta-like ligand4 (DLL4) expression. CONCLUSIONS: Propranolol may play a role in IH treatment by increasing Jagged1 expression in endothelial cells, activating the Notch pathway and inducing the upregulation of the downstream target gene HEY1.


Assuntos
Hemangioma , Propranolol , Humanos , Células Endoteliais da Veia Umbilical Humana , Propranolol/farmacologia , Propranolol/uso terapêutico , Transdução de Sinais/genética , Hemangioma/tratamento farmacológico , Hemangioma/genética , Biologia , Proliferação de Células
19.
Toxicol Lett ; 383: 112-120, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37394154

RESUMO

We measured the cardiac contractile effects of the sympathomimetic amphetamine-like drug methamphetamine alone and in the presence of cocaine or propranolol in human atrial preparations. For a more comprehensive analysis, we also examined the effects of methamphetamine in preparations from the left and right atria of mice and, for comparison, analyzed the cardiac effects of amphetamine itself. In human atrial preparations, methamphetamine and amphetamine increased the contractile force, the relaxation rate, and the rate of tension development, and shortened the time to maximum tension and the time to relaxation. Likewise, in mice preparations, methamphetamine and amphetamine increased the contractile force in the left atrium and increased the beating rate in the right atrium. The effect in human atrial preparations started at 1 µM, therefore methamphetamine was less effective and potent than isoproterenol in increasing contractile force. These positive inotropic effects of methamphetamine were greatly attenuated by 10 µM cocaine and abolished by 10 µM propranolol. The inotropic effects of methamphetamine in human atrial preparations were associated with, and are believed to be mediated at least in part by, an increase in the phosphorylation state of the inhibitory subunit of troponin. In conclusion, the sympathomimetic central stimulant drug methamphetamine (as well as amphetamine) increased contractile force and protein phosphorylation, presumably through a release of noradrenaline in isolated human atrial preparations. Thus, methamphetamine acts as an indirect sympathomimetic in the human atrium.


Assuntos
Fibrilação Atrial , Cocaína , Metanfetamina , Humanos , Norepinefrina/farmacologia , Simpatomiméticos/farmacologia , Propranolol/farmacologia , Metanfetamina/toxicidade , Átrios do Coração , Contração Miocárdica , Cocaína/toxicidade
20.
J Hepatol ; 79(4): 977-988, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482222

RESUMO

BACKGROUND & AIMS: ß-blockers reduce hepatic venous pressure gradient (HVPG) by decreasing portal inflow, with no reduction in intrahepatic vascular resistance. 5-Methyltetrahydrofolate (5-MTHF) can prevent oxidative loss of tetrahydrobiopterin (BH4), a cofactor for endothelial nitric oxide synthase coupling. It also converts homocysteine (tHcy) into methionine and enables the degradation of asymmetric dimethylarginine (ADMA), an inhibitor of endothelial nitric oxide synthase. The aim of this study was to evaluate the effects of 5-MTHF in combination with propranolol on HVPG and nitric oxide bioavailability markers in patients with cirrhosis and portal hypertension. METHOD: Sixty patients with cirrhosis and HVPG ≥12 mmHg were randomized 1:1 to receive treatment with 5-MTHF+propranolol or placebo+propranolol for 90 days under double-blind conditions. HVPG and markers of nitric oxide bioavailability (BH4, ADMA and tHcy) were measured again at the end of treatment. RESULTS: Groups were similar in terms of baseline clinical and hemodynamic data and nitric oxide bioavailability markers. HVPG decreased in both groups, but the magnitude of the change was significantly greater in the group treated with 5-MTHF+propranolol compared to placebo+propranolol (percentage decrease, 20 [29-9] vs. 12.5 [22-0], p = 0.028), without differences in hepatic blood flow. At the end of treatment, 5-MTHF+propranolol (vs. placebo+propranolol) was associated with higher BH4 (1,101.4 ± 1,413.3 vs. 517.1 ± 242.8 pg/ml, p <0.001), lower ADMA (109.3 ± 52.7 vs. 139.9 ± 46.7 µmol/L, p = 0.027) and lower tHcy (µmol/L, 11.0 ± 4.6 vs. 15.4 ± 7.2 µmol/L, p = 0.010) plasma levels. CONCLUSION: In patients with cirrhosis and portal hypertension, 5-MTHF administration significantly enhanced the HVPG reduction achieved with propranolol. This effect appears to be mediated by improved nitric oxide bioavailability in the hepatic microcirculation. CLINICAL TRIAL EUDRACT NUMBER: 2014-002018-21. IMPACT AND IMPLICATIONS: Currently, the pharmacological prevention of cirrhosis complications due to portal hypertension, such as esophageal varices rupture, is based on the use of ß-blockers, but some patients still present with acute variceal bleeding, mainly due to an insufficient reduction of portal pressure. In this study, we sought to demonstrate that the addition of folic acid to ß-blockers is more effective in reducing portal pressure than ß-blockers alone. This finding could represent the basis for validation studies in larger cohorts, which could impact the future prophylactic management of variceal bleeding in cirrhosis. Enhancing the benefit of ß-blockers with a safe, accessible, cost-effective drug could improve clinical outcomes in cirrhosis, which in turn could translate into a reduction in the rates and costs of hospitalization, and ultimately into improved survival.


Assuntos
Varizes Esofágicas e Gástricas , Hipertensão Portal , Humanos , Propranolol/uso terapêutico , Propranolol/farmacologia , Varizes Esofágicas e Gástricas/complicações , Óxido Nítrico Sintase Tipo III/farmacologia , Óxido Nítrico Sintase Tipo III/uso terapêutico , Pressão na Veia Porta , Óxido Nítrico , Hemorragia Gastrointestinal/prevenção & controle , Antagonistas Adrenérgicos beta/uso terapêutico , Antagonistas Adrenérgicos beta/farmacologia , Cirrose Hepática/complicações , Cirrose Hepática/tratamento farmacológico , Hipertensão Portal/etiologia , Hipertensão Portal/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...